资源类型

期刊论文 264

年份

2023 30

2022 27

2021 27

2020 22

2019 21

2018 13

2017 14

2016 10

2015 6

2014 33

2013 8

2012 4

2011 7

2010 12

2009 8

2008 6

2007 8

2006 1

2005 1

2003 1

展开 ︾

关键词

膜分离 6

渗透汽化 5

反渗透 3

纳滤 3

聚偏氟乙烯 3

双极板 2

反渗透膜 2

吸附 2

气体分离 2

氧化石墨烯 2

水处理 2

水安全 2

油水分离 2

耐氯性 2

聚酰胺 2

膜技术 2

膜材料 2

膜电极 2

超滤 2

展开 ︾

检索范围:

排序: 展示方式:

A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation

Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou

《环境科学与工程前沿(英文)》 2019年 第13卷 第6期 doi: 10.1007/s11783-019-1176-6

摘要: • A novel SBM-C-PBR was constructed for microalgae cultivation. • Membrane fouling was greatly mitigated by membrane carbonation. • NH4+ and P removal rates were around 80% in SBM-C-PBR. • Biomass was completely retained by membrane. In this study, a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation. Herein, membrane module was endowed functions as microalgae retention and CO2 carbonation. The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm, photosynthetically active radiation was 36 W/m2 and the CO2 concentration was 10% (v/v). In long-term cultivation, the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods. The concentrations of chlorophyll a, chlorophyll b and carotenoids were increased about 23.2, 14.9 and 6.3 mg/L respectively in period I; meanwhile, the accumulation was about 25.0, 14.5, 6.6 mg/L respectively in the period II. Furthermore, the pH was kept about 5.5–7.5 due to intermittent carbonation mode, which was suitable for the growth of microalgae. Transmembrane pressure (TMP) was only increased by 0.19 and 0.16 bar in the end of periods I and II, respectively. The pure flux recovered to 75%–80% of the original value by only hydraulic cleaning. Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly.

关键词: Membrane carbonation     SBM-C-PBR     Cultivate microalgae     Membrane fouling    

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added

Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 832-844 doi: 10.1007/s11705-019-1871-7

摘要: The desulfurization by seawater and mineral carbonation have been paid more and more attention. In this study, the feasibility of magnesia and seawater for the integrated disposal of SO and CO in the simulated flue gas was investigated. The process was conducted by adding MgO in seawater to reinforce the absorption of SO and facilitate the mineralization of CO by calcium ions. The influences of various factors, including digestion time of magnesia, reaction temperature, and salinity were also investigated. The results show that the reaction temperature can effectively improve the carbonation reaction. After combing SO removal process with mineral carbonation, Ca removal rate has a certain degree of decrease. The best carbonation condition is to use 1.5 times artificial seawater (the concentrations of reagents are 1.5 times of seawater) at 80°C and without digestion of magnesia. The desulfurization rate is close to 100% under any condition investigated, indicating that the seawater has a sufficient desulfurization capacity with adding magnesia. This work has demonstrated that a combination of the absorption of SO with the absorption and mineralization of CO is feasible.

关键词: mineral carbonation     wet SO2 disposal     seawater     desulfurization    

Long-term durability of onshore coated concrete —chloride ion and carbonation effects

Seyedhamed SADATI,Mehdi K. MORADLLO,Mohammad SHEKARCHI

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 150-161 doi: 10.1007/s11709-016-0341-2

摘要: Enhancing service life of reinforced concrete (RC) structures located in marine environments is an issue of great interest for design engineers. The present research addresses the effect of surface coatings on service life of onshore RC structures. Long-term performance of concrete samples up to 88 months of exposure at natural marine environment was investigated. Two onshore exposure conditions, including soil and atmosphere and different types of concrete coatings were studied. Carbonation rates of up to 0.5 and 1.5 mm/year were observed at the first 88 months of exposure for soil and atmospheric samples, respectively. Surface chloride ion build-up and variation in chloride ion diffusion were monitored with respect to time, and service life was estimated. Based on the obtained results it is proposed to use the aliphatic acrylic and polyurethane coatings for enhancing the service life of concrete structures in the investigated exposure conditions.

关键词: carbonation     chloride ion     corrosion     service life     surface coating    

Impacts of climate change on optimal mixture design of blended concrete considering carbonation and chloride

Xiao-Yong WANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 473-486 doi: 10.1007/s11709-020-0608-5

摘要: Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted. However, these previous studies did not consider the effects of climate change, such as acceleration in the deterioration of durability, on mixture design. This study presents a procedure for the optimal mixture design of ternary blended concrete considering climate change and durability. First, the costs of CO emissions and material are calculated based on the concrete mixture and unit prices. Total cost is equal to the sum of material cost and CO emissions cost, and is set as the objective function of the optimization. Second, strength, slump, carbonation, and chloride ingress models are used to evaluate concrete properties. The effect of different climate change scenarios on carbonation and chloride ingress is considered. A genetic algorithm is used to find the optimal mixture considering various constraints. Third, illustrative examples are shown for mixture design of ternary blended concrete. The analysis results show that for ternary blended concrete exposed to an atmospheric environment, a rich mix is necessary to meet the challenge of climate change, and for ternary blended concrete exposed to a marine environment, the impact of climate change on mixture design is marginal.

关键词: ternary blended concrete     climate change     optimal mixture design     carbonation     chloride ingress    

Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure

Jingcai ZHAO, Xingfu SONG, Ze SUN, Jianguo YU

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 447-455 doi: 10.1007/s11705-013-1370-1

摘要: This study on thermodynamic property of NH -CO -H O system provided the basic data for ammonia carbonation. Simulations on vapor-liquid equilibrium (VLE) of ammonia carbonation with different physical properties were discussed in NH -H O and NH -CO -H O systems, respectively. The results indicated that at low temperature (303.15 K–363.15 K) and pressure (0.1–0.4 MPa), the PR (Peng-Robinson) equation was suitable for the description of the thermodynamic state in NH -H O system. NRTL (Non-Random-Two-Liquid) series models were selected for NH -CO -H O mixed electrolyte solution system. VLE data regression results showed that NRTL series models were suitable for describing thermodynamic properties of NH -CO -H O system, because average relative error fitting with each model was about 1%. As an asymmetric electrolytes model in NRTL model, E–NRTLRK (Electrolyte NRTL Redlich Kwong) could most accurately fit VLE data of NH -CO -H O system, with fitting error less than 1%. In the extent temperature range of 273.15 K–363.15 K, the prediction of product component using E-NRTLRK model for ammonia carbonation agreed well with the data reported in literature.

关键词: vapor-liquid equilibrium     activity coefficient     carbon dioxide     ammonia     NRTL    

Long-term effects of electrochemical realkalization on carbonated concrete

Peng ZHU, Ji ZHANG, Wenjun QU

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 127-137 doi: 10.1007/s11709-019-0583-x

摘要: The long-term effects of electrochemical realkalization on carbonated reinforced concrete with a / ratio of 0.65 were studied. Fourteen out of 16 carbonated specimens had been subjected to realkalization seven years ago, and the alkalinity of the concrete, the electrochemical characters (corrosion current density and potential) of the specimens and the corrosion conditions of the steel bars were examined. Results of different specimens and also at different time (4, 10, 13 months and 7 years after realkalization) were compared. According to the phenolphthalein and pH meter test, the alkalinity of the concrete had disappeared after seven years. Based on the potentiodynamic polarization test, various corrosion conditions had developed on the steel bars, which was verified by visual observation. All bars were in the depassivated state, and their corrosion current densities increased significantly after seven years. Cracks developed in some of the specimens, and the diverse compactness of concrete and excessive current of realkalization were considered to be possible causes. The effects of the realkalization treatment vanished after seven years.

关键词: realkalization     concrete     carbonation     polarization curve     corrosion    

Prediction on CO

Kaiwen HUANG, Ao LI, Bing XIA, Tao DING

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 746-759 doi: 10.1007/s11709-020-0635-2

摘要: Carbonation of concrete is a process which absorbs carbon dioxide (CO ). Recycled aggregate concrete (RAC) may own greater potential in CO uptake due to the faster carbonation rate than natural aggregate concrete (NAC). A quantitative model was employed to predict the CO uptake of RAC in this study. The carbonation of RAC and the specific surface area of recycled coarse aggregates (RCAs) were tested to verify accuracy of the quantitative model. Based on the verified model, results show that the CO uptake capacity increases with the increase of RCA replacement percentage. The CO uptake amount of 1 m C30 RAC within 50 years is 10.6, 13.8, 17.2, and 22.4 kg when the RCA replacement percentage is 30%, 50%, 70%, and 100%, respectively. The CO uptake by RCAs is remarkable and reaches 35.8%–64.3% of the total CO uptake by RAC when the RCA storage time being 30 days. Considering the fact that the amount of old hardened cement paste in RCAs is limited, there is an upper limit for the CO uptake of RCAs.

关键词: RAC     CO2 uptake     carbonation     specific surface area     RCA    

Service life prediction of fly ash concrete using an artificial neural network

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 793-805 doi: 10.1007/s11709-021-0717-9

摘要: Carbonation is one of the most aggressive phenomena affecting reinforced concrete structures and causing their degradation over time. Once reinforcement is altered by carbonation, the structure will no longer fulfill service requirements. For this purpose, the present work estimates the lifetime of fly ash concrete by developing a carbonation depth prediction model that uses an artificial neural network technique. A collection of 300 data points was made from experimental results available in the published literature. Backpropagation training of a three-layer perceptron was selected for the calculation of weights and biases of the network to reach the desired performance. Six parameters affecting carbonation were used as input neurons: binder content, fly ash substitution rate, water/binder ratio, CO2 concentration, relative humidity, and concrete age. Moreover, experimental validation carried out for the developed model shows that the artificial neural network has strong potential as a feasible tool to accurately predict the carbonation depth of fly ash concrete. Finally, a mathematical formula is proposed that can be used to successfully estimate the service life of fly ash concrete.

关键词: concrete     fly ash     carbonation     neural networks     experimental validation     service life    

In-situ condition monitoring of reinforced concrete structures

Sanjeev Kumar VERMA,Sudhir Singh BHADAURIA,Saleem AKHTAR

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 420-437 doi: 10.1007/s11709-016-0336-z

摘要: Performance of concrete structures is significantly influenced and governed by its durability and resistance to environmental or exposure conditions, apart from its physical strength. It can be monitored, evaluated and predicted through modeling of physical deterioration mechanisms, performance characteristics and parameters and condition monitoring of in situ concrete structures. One such study has been conducted using Non-destructive testing equipment in the city of Bhopal and around located in India. Some selected parameters influencing durability of reinforced concrete (RC) structures such as concrete cover, carbonation depth, chloride concentration, half cell potential and compressive strength have been measured, for establishing correlation among various parameters and age of structures. Effects of concrete cover and compressive strength over the variation of chloride content with time are also investigated.

关键词: concrete     carbonation     chloride     corrosion     monitoring     models    

A stepwise process for carbon dioxide sequestration using magnesium silicates

Johan FAGERLUND, Experience NDUAGU, Ron ZEVENHOVEN, Inês ROMÃO,

《化学科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 133-141 doi: 10.1007/s11705-009-0259-5

摘要: This work involves the production of magnesium in the form of Mg(OH) from serpentinite rock (nickel mine tailing) material followed by conversion into MgCO using a pressurised fluidised bed (PFB) reactor operating at 400°C–600°C and pressures up to 2.85MPa. Our approach is rooted in the thermodynamic fact that the reaction between Mg(OH) and gaseous CO forming MgCO and water releases significant amounts of heat. The main problem is, however, the chemical kinetics; the reaction is slow and has to be accelerated in order to be used in an economically viable process for large-scale (~1Mt/a) CO sequestration. We have constructed a lab-scale PFB reactor test-setup for optimising the carbonation reaction. At high enough temperatures and conversion levels the reaction should provide the heat for the proceeding Mg(OH) production step, making the overall process energy neutral. So far we have been able to achieve a conversion degree of 26% at 500°C and 2.85MPa after 30min (particle size 125–212μm). In this paper the test facility and our latest results and progress on CO mineral carbonation are summarised. Also, the possible integration of the iron as a feedstock for iron and steel production will be briefly addressed. An interesting side-effect of this carbon dioxide capture and storage (CCS) route is that significant amounts of iron are obtained from the serpentinite rock material. This is released during the Mg(OH) production and can be of great interest to the iron- and steel producing sector, which at the same time is Finland’s largest CO producer.

关键词: carbonation reaction     reactor     producer     large-scale     process    

Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

SUI Pengzhe, WEN Xianghua, HUANG Xia

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 362-367 doi: 10.1007/s11783-007-0062-9

摘要: In this study, ultrasound was used to control the membrane fouling online in an anaerobic membrane bioreactor (AMBR). Short-term running experiments were carried out under different operating conditions to explore feasible ultrasonic parameters. The experimental results indicated that when the crossflow velocity was more than 1.0 m/s, membrane fouling could be controlled effectively only by hydrodynamic methods without ultrasound. When ultrasound was applied, an ultrasonic power range of 60–150 W was suitable for the membrane fouling control in the experimental system. The experimental results showed that the membrane fouling was controlled so well that membrane filtration resistance (Σ) could stay at 5 × 10 m for more than a week with the crossflow velocity of 0.75 m/s, which equaled the effect of crossflow velocity of more than 1.0 m/s without ultrasound.

关键词: membrane filtration     filtration resistance     different     feasible ultrasonic     anaerobic membrane    

Novel membrane separation technologies and membrane processes

Yanying Wei, Gongping Liu, Jianquan Luo, Libo Li, Zhi Xu

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 717-719 doi: 10.1007/s11705-021-2053-y

A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1729-6

摘要:

● Fundamentals of membrane fouling are comprehensively reviewed.

关键词: Membrane fouling     Thermodynamic mechanism     XDLVO theory     Flory-Huggins theory     Fouling migration    

A review on membrane distillation in process engineering: design and exergy equations, materials and

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 592-613 doi: 10.1007/s11705-021-2105-3

摘要: One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

关键词: membrane distillation     recent developments     heat and mass transfer     wetting     membrane material    

Pilot plants of membrane technology in industry: Challenges and key learnings

Colin A. Scholes

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 305-316 doi: 10.1007/s11705-019-1860-x

摘要: Membrane technology holds great potential in gas separation applications, especially carbon dioxide capture from industrial processes. To achieve this potential, the outputs from global research endeavours into membrane technologies must be trialled in industrial processes, which requires membrane-based pilot plants. These pilot plants are critical to the commercialization of membrane technology, be it as gas separation membranes or membrane gas-solvent contactors, as failure at the pilot plant level may delay the development of the technology for decades. Here, the author reports on his experience of operating membrane-based pilot plants for gas separation and contactor configurations as part of three industrial carbon capture initiatives: the Mulgrave project, H3 project and Vales Point project. Specifically, the challenges of developing and operating membrane pilot plants are presented, as well as the key learnings on how to successfully manage membrane pilot plants to achieve desired performance outcomes. The purpose is to assist membrane technologists in the carbon capture field to achieve successful outcomes for their technology innovations.

关键词: membrane gas separation     membrane contactors     carbon capture     pilot plants     key learnings    

标题 作者 时间 类型 操作

A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation

Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou

期刊论文

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added

Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan

期刊论文

Long-term durability of onshore coated concrete —chloride ion and carbonation effects

Seyedhamed SADATI,Mehdi K. MORADLLO,Mohammad SHEKARCHI

期刊论文

Impacts of climate change on optimal mixture design of blended concrete considering carbonation and chloride

Xiao-Yong WANG

期刊论文

Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure

Jingcai ZHAO, Xingfu SONG, Ze SUN, Jianguo YU

期刊论文

Long-term effects of electrochemical realkalization on carbonated concrete

Peng ZHU, Ji ZHANG, Wenjun QU

期刊论文

Prediction on CO

Kaiwen HUANG, Ao LI, Bing XIA, Tao DING

期刊论文

Service life prediction of fly ash concrete using an artificial neural network

期刊论文

In-situ condition monitoring of reinforced concrete structures

Sanjeev Kumar VERMA,Sudhir Singh BHADAURIA,Saleem AKHTAR

期刊论文

A stepwise process for carbon dioxide sequestration using magnesium silicates

Johan FAGERLUND, Experience NDUAGU, Ron ZEVENHOVEN, Inês ROMÃO,

期刊论文

Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

SUI Pengzhe, WEN Xianghua, HUANG Xia

期刊论文

Novel membrane separation technologies and membrane processes

Yanying Wei, Gongping Liu, Jianquan Luo, Libo Li, Zhi Xu

期刊论文

A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process

期刊论文

A review on membrane distillation in process engineering: design and exergy equations, materials and

期刊论文

Pilot plants of membrane technology in industry: Challenges and key learnings

Colin A. Scholes

期刊论文